skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jin, K"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 26, 2026
  2. Free, publicly-accessible full text available June 25, 2026
  3. Gentry, E; Ju, F; Liu, X (Ed.)
    Free, publicly-accessible full text available June 1, 2026
  4. Fluorescent protein biomaterials have important applications such as bioimaging in pharmacological studies. Self-assembly of proteins, especially into fibrils, is known to produce fluorescence in the blue band. Capable of self-assembly into nanofibers, we have shown we can modulate its aggregation into mesofibers by encapsulation of a small hydrophobic molecule. Conversely, azobenzenes are hydrophobic small molecules that are virtually non-fluorescent in solution due to their highly efficient photoisomerization. However, they demonstrate fluorogenic properties upon confinement in nanoscale assemblies by reducing the non-radiative photoisomerization. Here, we report the fluorescence of a hybrid protein-small molecule system in which azobenzene is confined in our protein assembly leading to fiber thickening and increased fluorescence. We show our engineered protein Q encapsulates AzoCholine, bearing a photoswitchable azobenzene moiety, in the hydrophobic pore to produce fluorescent mesofibers. This study further investigates the photocontrol of protein conformation as well as fluorescence of an azobenze-containing biomaterial. 
    more » « less